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Notons ωf (δ) = sup{|f(x)−f(y)|; |x−y| ≤ δ} le module de continuité
de f . Soit δ ∈]0, 1[. On a pour tout x ∈ R

|f ∗ kn(x)− f(x)| ≤
Z
R
|f(x− t)− f(x)|kn(t) dλ(t)

≤
Z
R

�
ωf (δ) + 2‖f‖∞1{|t|>δ}

�
kn(t) dλ(t)

≤ ωf (δ) + 4‖f‖∞
Z 1

δ

(1− t2)n

an
dt

≤ ωf (δ) + 4‖f‖∞
(1− δ2)n

an
≤ ωf (δ) + 8(n+ 1)‖f‖∞(1− δ2)n.

En passant au supremum en x, on a
‖f ∗ kn − f‖∞ ≤ ωf (δ) + 8(n + 1)‖f‖∞(1 − δ2)n, puis en passant à la
limite supérieure en n :

lim
n→+∞

‖f ∗ kn − f‖∞ ≤ ωf (δ).

Comme f est uniformément continue, lim
δ→0

ωf (δ) = 0, ce qui donne le

résultat voulu.

3. Pour tout x ∈ R, on obtient

(f ∗ kn)(x) =
Z
R
f(t)kn(x− t) dλ(t) =

1

an

Z
R
f(t)gn(x− t) dλ(t)

=
1

an

Z
[−1/2,1/2]

f(t)gn(x− t) dλ(t).

Lorsque |x| ≤ 1/2, on a |x− t| ≤ 1 pour tout t ∈ [−1/2, 1/2], donc

(f ∗ kn)(x) =
1

an

Z
[−1/2,1/2]

f(t)(1− (x− t)2)n dλ(t).

Or (1− (x− t)2)n se développe en
nX
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d’où en posant ck =
R
[−1/2,1/2] t

kf(t) dλ(t) :

(f ∗ kn)(x) =
nX
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� 2kX
i=0

�
2k

i

�
(−1)2k−i c2k−1

an
xi,

qui est bien un polynôme en x de degré 2n.

4. Soit f une fonction continue sur [−1/4, 1/4]. On peut la prolonger de
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manière classique en une fonction f̃ continue, nulle à l’extérieur de
[−1/2, 1/2], affine sur [−1/2,−1/4] et [1/4, 1/2]. f̃ est uniformément
continue sur R, avec ωf̃ (δ) ≤ max(ωf (δ), 2δ|f(1/4)|, 2δ|f(−1/4)|). D’après
ce qui précède, (f̃ ∗kn)(x) est une suite de polynômes qui converge uni-
formément vers f sur [−1/4, 1/4]. Passons au cas général : soit f une
fonction continue sur [a, b], et notons g(θ) = (b − a)2θ + a+b

2 . f ◦ g
est une fonction continue sur [−1/4, 1/4], donc il existe une suite (Pn)
de polynômes qui converge uniformément vers f ◦ g sur [−1/4, 1/4].
Posons alors Qn = Pn ◦ g−1. Qn est un polynôme avec

sup
x∈[a,b]

|Qn(x)− f(x)| = sup
x∈[a,b]

|Pn(g−1(x))− (f ◦ g)(g−1(x))|

= sup
y∈[−1/4,1/4]

|Pn(y)− (f ◦ g)(y)|,

qui tend bien vers 0 lorsque n tend vers l’infini.

Solution 195 1. Posons f(x) = 1E ∗ 1−E . On a ∀x, y ∈ R

f(x)− f(y) =
Z
R
(1−E(x− t)− 1−E(y − t))1E(t) dλ(t),

donc quels que soient x et y réels, on a

|f(x)− f(y)| ≤
Z
R
|1E(t− x)− 1E(t− y)| dλ(t) = ‖Tx1E − Ty1E‖1.

Or pour g ∈ L1 l’application x 7→ Txg est continue de R dans L1, ce qui
donne la continuité de f .

2. f(0) =
R
R 1E(t)1−E(0 − t) dλ(t) =

R
R 1E(t)2 dλ(t) = λ(E) > 0. Par

continuité de f , il existe α tel que f(x) > 0 pour x ∈ [−α, α]. Mais si
f(x) > 0, la mesure de Lebesgue des t tels que

1E(x− t)1−E(t) = 1E(x− t)1E(−t) > 0

est strictement positive. En particulier, il existe t tel que x − t ∈ E et
−t ∈ E, donc x = x− t− (−t) ∈ E − E.

D.9 Exercices sur les fonctions caractéristiques

Solution 203 1. Pour tout s ≥ 0, on a

LΓ(r,λ)(t) =
Z +∞

−∞
e−txγr,λ(x) dx =

λr

(λ+ t)r

Z +∞

0
γr+t,λ(x) dx =

λr

(λ+ t)r
.

2. Comme X et Y sont indépendantes, on a l’égalité

LX+Y (t) = LX(t)LY (t) =
λr+s

(λ+ t)r+s
= LΓ(r+s,λ)(t),


